

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

Admission Exam PPG-EM – 2022/1º sem

Candidate Name:	
ID:	
Date:	
Signature:	

Instructions:

1) The admission exam will be held on December 5, 2021, online, from 9:00 am to 10:00 am (Brasília time). The test will be available at 8:55 am (Brasília time), on the Program website (http://www.ppg-sem.eesc.usp.br/) and on the registration website (http://ppgselecao.eesc.usp.br/).

2) The exam consists of 10 questions, and the candidate must select 5 questions to solve. In case the candidate solves a larger number of questions, only the first 5 will be considered;

3) All questions have the same value (2.0 points for each QUESTION);

4) The candidate must send to the e-mail: ps_posgrem@eesc.usp.br, a scanned copy of the test resolution, in accordance with the following instructions:

- if possible, print the test and answer the questions in the specified fields;
- if it is not possible to print the proof, indicate the QUESTION number and answer it on, at most, an A4 sheet;
- all questions must be answered in your own handwriting;
- all answer sheets must contain the student's name and signature;
- send a single document, in .pdf format, containing all the answer sheets.

5) Only the resolutions that comply with all instructions in the notice and that are sent by e-mail (ps_posgrem@eesc.usp.br), with delivery time **until 10:15 am** (Brasilia time), will be considered suitable for correction.

Graduate Program in Mechanical Engineering São Carlos School of Engineering - University of São Paulo Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590 Tel: 16 3373 9401 Candidate Name: ____

_Signature: _

```
QUESTION 1: (Linear Algebra)
```

Considering the matrices **A** and **B** defined below, determine the eigenvalues, λ_1 and λ_2 , and eigenvectors, \mathbf{v}_1 and \mathbf{v}_2 , corresponding to the generalized eigenvalue problem $\lambda \mathbf{B} \mathbf{v} = \mathbf{A} \mathbf{v}$. Normalize the eigenvectors such that $|\mathbf{v}_1| = |\mathbf{v}_2| = 1$.

$$\mathbf{A} = \begin{bmatrix} 3 & -2 \\ -2 & 4 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Justify your answer in the checkered area.

Candidate Name:	 Signature:

Candidate Name: Signature:											
QUESTION 2: (Differential and Integr	al Calculus)										
Find the limit, if any:	Find the limit, if any:										
	$\lim_{x \to \infty} \left(\frac{1 - \cos x}{2} \right)$										
$x \to 0$ (sen x)											
Justify your answer in the checker	ed area.										
Answer:											

Candidate Name:	 Signature:

Candidate Name:	Signature:								
QUESTION 3: (Computation)									
elect one of the options below, analyze the code and indicate the expected output.									
Option 1: Code referring to an abstract data struct	ure implemented in C programming language.								
1 2 #include <stdio.h> 3 #include <stdlib.h> 4 5 struct no 6 Uf (include decided)</stdlib.h></stdio.h>	60 else if(raiz->left_filho==NULL raiz->right_filho==NULL) 61 (struct no *temp; 63 if(raiz->left_filho==NULL) 64 temp = raiz->right_filho;								
<pre>c = { lnt data; 7 struct no *right_filho; 8 struct no *left_filho; 9 }; 10</pre>	65 else 66 temp = raiz->left_filho; 67 free(raiz); 68 return temp; 69 -								
<pre>11 struct no* search(struct no *raiz, int x) 12 □{ if(raiz==NULL raiz->data==x) 13 return raiz; 14 else if(x>raiz->data) 15 return search(raiz->right_filho, x); 16 else</pre>	<pre>70 71 72 else 72 { struct no *temp = find_minimum(raiz->right_filho); 73 raiz->data = temp->data; 74 raiz->right_filho = apague(raiz->right_filho, temp->data); 75 75 75 75 75 75 75 75 75 75 75 75 75</pre>								
<pre>17</pre>	76 } 77 } 78 } 77 }								
<pre>21 E{ if(raiz == NULL) 22 return NULL; 23 else if(raiz->left_filho != NULL) 24 return find_minimum(raiz->left_filho); 25 return raiz; 26 } 27</pre>	<pre>80 void manipule(struct no *raiz) 81 = { if(raiz!=NULL) 82 =</pre>								
28 struct no* new_no(int x) 29 ⊟ { struct no *p; 30 p = malloc(sizeof(struct no)); 1 n-viate = x;	86 □; 87 88 int main() 89 □{ (struct no *raiz;								
<pre>32 p->left_filho = NULL; 33 p->right_filho = NULL; 34 return p; 35 L; 36</pre>	<pre>90 raiz = new_no(20); 91 insert(raiz,5); 92 insert(raiz,1); 93 insert(raiz,15); 94 insert(raiz,7); 95 insert(raiz,7);</pre>								
<pre>37 struct no* insert(struct no *raiz, int x) 38 □{(if(raiz==NULL) 39 return new_no(x); 40 else if(x>raiz->data) 41 raiz->right_filho = insert(raiz->right_filho, x); 42 else</pre>	<pre>36 insert(raiz,12); 97 insert(raiz,30); 98 insert(raiz,25); 99 insert(raiz,40); 100 insert(raiz, 45);</pre>								
<pre>42 clee 43 43 44 44 45 46 46 47 5truct no* apague(struct no *raiz, int x)</pre>	<pre>101 insert(raiz, 42); 102 103 manipule(raiz); 104 printf("\n"); 105 105</pre>								
<pre>48 ⊟ { if(raiz==NULL) 49 return NULL; 50 if (x>raiz->data) 51 raiz->right_filho = apague(raiz->right_filho, x); 52 else if(x<raiz->data)</raiz-></pre>	<pre>100 raiz = apague(raiz, 1); 107 raiz = apague(raiz, 40); 108 raiz = apague(raiz, 45); 109 raiz = apague(raiz, 9); 110 110 111 manipule(raiz); </pre>								
53 raiz->left_filho = apague(raiz->left_filho, x); 54 else 55 □ 66 if(raiz->left_filho==NULL && raiz->right_filho==NULL) 57 □ 50 ↓	<pre>112 printf("\n"); 113 114 115 } </pre>								
50 Feturn NULL; 59 - } 60									

Candidate Name:

Signature:

Option 2: Code referring to an abstract data structure implemented in Python programming language. class Node: 2 3 """ Implements a node from the tree""" 4 def __init__(self, data): self.data = data
self.left = None 5 6 self.right = None Class BinarySearchTree: 9 "" Implements a binary search tree""" def init_(self, data): self.parent node = Node(data) 13 self.list parent nodes = [self.parent node] 14 þ def insert(self, new node): 16 parent = self.parent node 17 18 while True: 19 if new_node.data > parent.data: 20 if parent.right == None: 21 parent.right = new_node ╞ 22 if parent not in self.list_parent_nodes: 23 self.list_parent_nodes.append(parent) 24 break 25 else: 26 parent = parent.right 27 elif new_node.data < parent.data:</pre> 28 if parent.left == None: 29 parent.left = new_node -30 if parent not in self.list_parent_nodes: self.list_parent_nodes.append(parent) break else: 34 parent = parent.left 35 else: print("Esse nó já existe!") 36 37 38 def print_tree(self): 39 for parent in self.list_parent_nodes: 40 print('Parent node:', parent.data) print('Left Node:', parent.left.data if parent.left !=None else None)
print('Right Node:', parent.right.data if parent.right != None else 41 42 None) 43 print('\n') 44 def shift_binary_number_left (binary):
 """ Shifts all bits to the left by one place and adds a zero to the right """ 45 46 L 47 return int(binary << 1)</pre> 48 49 def main(): tree = BinarySearchTree(shift_binary_number_left(3)) # b'0011'
tree.insert(Node(shift_binary_number_left(1))) # b'0001' tree.insert(Node(shift_binary_number_left(4))) # b'0100' tree.insert(Node(shift_binary_number_left(2))) # b'0010' 54 tree.print_tree() if __name__ == "__main_": main() 56 57 Justify your answer in the checkered area.

Answer (Indicate the selected option):

Ca	ndie	dat	e N	am	e: _			 	 	 	 	 	 	Sig	gna	tur	e: _	 	 	 	 		 -
\vdash							-																

Candidate Name: _

Signature:

QUESTION 4: (Electronics)

In the circuits below, a potentiometer **P** has been placed to adjust the output voltage level V_{out} . Regardless of the sign (positive or negative) of the output voltage, which of the two circuits will result in a linear adjustment of V_{out} as a function of the value of **R2**? Assume that **P** is a composition of two resistors (**R1** and **R2**), that **R2** varies linearly with the potentiometer's position setting, and that the operational amplifier is an ideal component.

Justify your answer in the checkered area.

Cai	ndio	late	e N	am	e: _					 	 	 			 	Sig	gna	tur	e: _	 	 	 	 	 	
																								+	
														_										+	
														_							 			-	
	-																							-	
	-																			 		 		+	
																				 				+	
																								-	
	-													_										 -	
	-																							 -	
														_						 	 			 +	
	-																			 	 			 +	
														_						 	 			+	
														_						 	 			+	
																								+	
			-																					 +	
		-	-										$\left - \right $											 +	
		-	-				-						$\left - \right $											 +	
														_										 +	
																				 	 			 +	
																								_	
																				 	 			 _	
																				 	 			 -	
											 									 	 	 		 -	
																				 	 			 -	
																				 	 			 -	
	-																							 -	
	-																							_	
																								_	
														_						 	 			+	
														_						 	 	 		 -	
	+																							+	
														_										+	
	+																							 +	
																								+	
	-																							+	
		-																						-	
																								-	
																								-	
		-	-										$\left - \right $	_		_								 -	
													$\left - \right $											 +	
														_										-	
																								+	
														_										_	
																								_	
																								_	
		<u> </u>	<u> </u>																					 +	
																								+	
														_										-	
1	1	1	1	1	1	1	1	1	1			1	i		. I			I					ı		

Candidate Name:	Signature:

Candidate Name: _____

_Signature: _

QUESTION 6: (Materials)

Calculate the number of atoms effectively contained in the unit cell and the number of slip systems for dislocation gliding in the crystal structure present in the steel AISI 310.

Justify your answer in the checkered area.

Candidate Name:	Signature:

Candidate Name: _

Signature: _

QUESTION 7: (General Mechanics)

Consider a jet-powered sled with a mass of $3 * 10^3$ kg that initially is at rest. Since the engine produces a horizontal thrust given by the figure below, determine the speed of the sled after 4 s. Present the necessary hypotheses for the solution of the problem.

Justify your answer in the checkered area.

A	nsv	ver	:																

Candidate Name:	Signature:

Candidate Name: _

Signature:

QUESTION 8: (Solid Mechanics)

A metallic drilled cylinder is joined to a metallic shaft by a thick rubber (centered) as shown in section below.

- a) Determine the shear stress in the rubber as a function of the radius when an axial load on the shaft(P) of 2000N is applied.
- b) Determine the shear stress in the rubber as a function of the radius when a shaft torque (Mt) of 20 N.m is applied.

Candidate Name:	Signature:

Candidate Name: ____

Signature: _

QUESTION 9: (Thermodynamics)

A compressor admits 340 m³/min of air at 95 kPa and 25 °C at its inlet with negligible speed. The compressor discharges compressed air at 200 kPa and 120 °C through an outlet with a cross-sectional area equal to 0.025 m². Heat is transferred from the compressed air at a rate equal to 60 kJ/min. Determine the input power required to drive the compressor in kW. Consider air as an ideal gas with R_{ar} =287 J/(kg*K) and c_p =1008 J/(kg*K).

Ideal gas relations: $p \forall = mR_a T$ $dh = c_p dT$

Energy Conservation: \dot{Q} =

$$\dot{Q} = \frac{dE}{dt} + \sum_{sai} \left(h + \frac{V^2}{2} + gz \right) - \sum_{ent} \left(h + \frac{V^2}{2} + gz \right) + \dot{W}$$

The total energy is given by: E = U + EC + EP

Where: p – pressure, \forall – volume, V – velocity, m – mass, t – time, T – temperature, U – total internal energy, EC – total kinetic energy, EP – total potential energy, Q[°] – heat transfer rate, W[°] – power, h – specific enthalpy, R_g – gas constant, z – height, g – gravitational acceleration, and c_p – specific heat at constant pressure.

The subscripts represent: sai – outlets and ent - inlets.

Justify your answer in the checkered area.

Candidate Name:	 Signature:	
	+++++++++++++++++++++++++++++++++++++++	
	+ + + + + + + + + + + + + + + + + + + +	

Candidate Name: _ Signature: QUESTION 10: (Fluid Mechanics) Consider a tank into which water enters at a volumetric flow **q**. There is also a water outlet where the volumetric flow is proportional to **h** (ie, α **h**), where **h** is the level of the tank. The tank has base area **A** and starts with height **h**₀. Calculate the expression of the tank level with as a function of time, **h(t)**. q h $\frac{d}{dt} \int_{VC} \rho d \forall + \int_{SC} \rho (\vec{V} \cdot \vec{n}) dA = 0$ $\frac{d}{dt}\int_{VC}\rho\vec{V}d\forall +\int_{\mathcal{S}}\rho\vec{V}(\vec{V}\cdot\vec{n})dA + \vec{a}\int_{ref_{VC}}\rho d\forall = \vec{F}$ Justify your answer in the checkered area. Answer:

Candidate Name:	_ Signature:
	+ + + + + + + + + + + + + + + + + + + +